Forecasting Hourly Cryptocurrency Returns Using Recurrent Neural Networks: A Comparative Study of GRU, LSTM and Classical Models
pdf

Keywords

cryptocurrency, bitcoin, Internet, virtual currency, monetary system
Cryptocurrency forecasting
GRU
LSTM
ARIMA
big data analysis
High-frequency data

Categories

How to Cite

Morkowski, J. (2025) “Forecasting Hourly Cryptocurrency Returns Using Recurrent Neural Networks: A Comparative Study of GRU, LSTM and Classical Models”, Scientific Journal of Bielsko-Biala School of Finance and Law. Bielsko-Biała, PL, 29(4). doi: 10.19192/wsfip.sj4.2025.7.

Abstract

This study evaluates short-horizon forecasting of hourly cryptocurrency returns using two recurrent neural architectures—GRU and LSTM—estimated in more than 500 configurations across Bitcoin, Ethereum, Binance Coin and Litecoin. We adopt a unified protocol with intersection evaluation windows to ensure identical data coverage across models, and we compare magnitude-based errors (RMSE, MAE, MASE, sMAPE) with direction-based performance (Directional Accuracy, DA). Classical benchmarks (ARIMA/ETS, GARCH and a Random Walk random-walk) are estimated under the same one-step-ahead design. Empirically, GRU networks consistently achieve lower errors and higher DA than LSTM and traditional models. Best GRU configurations reach DA ≈ 0.65–0.72 depending on the asset, while requiring smaller amplitude recalibration. The results indicate that parsimonious recurrent gating is well-suited to the high-volatility, short-memory structure of cryptocurrency returns. Methodologically, the paper replicates and extends a previously published currency-market framework to a more turbulent domain, reinforcing the external validity of the findings.

https://doi.org/10.19192/wsfip.sj4.2025.7
pdf

References

Aldridge, I. (2013). High-frequency trading: A practical guide to algorithmic strategies and trading systems (2nd ed.). John Wiley & Sons.

Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions & Money, 54, 177–189. https://doi.org/10.1016/j.intfin.2017.12.004

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1

Borovkova, S., & Tsiamas, I. (2019). An ensemble of LSTM neural networks for high-frequency stock market classification. Journal of Forecasting, 38(6), 600–619. https://doi.org/10.1002/for.2574

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed.). John Wiley & Sons.

Chollet, F. (2018). Deep learning with Python (2nd ed.). Manning Publications.

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8 (pp. 103–111). Association for Computational Linguistics. https://doi.org/10.3115/v1/W14-4012

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236. https://doi.org/10.1080/713665670

Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis, 62, 182–199. https://doi.org/10.1016/j.irfa.2018.09.003

Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263. https://doi.org/10.1080/07350015.1995.10524599

Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Huynh, T. L. D., Nguyen, C. N., & Tran, M. D. (2024). Deep learning approaches in financial time-series forecasting: A comprehensive review. Expert Systems with Applications, 238, 122083. https://doi.org/10.1016/j.eswa.2023.122083

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

Kim, S., & Won, H. (2024). Evaluating recurrent and transformer architectures for cryptocurrency forecasting. Journal of Computational Finance, 27(4), 55–79. https://doi.org/10.21314/JCF.2024.439

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1412.6980

Lahmiri, S., & Bekiros, S. (2020). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons & Fractals, 131, 109886. https://doi.org/10.1016/j.chaos.2019.109886

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). The M5 competition: Accuracy and interpretability of machine learning methods. International Journal of Forecasting, 38(3), 1346–1364. https://doi.org/10.1016/j.ijforecast.2021.11.012

Morkowski, J. (2024). The accuracy of forecasting neural networks and the impact of using fuzzy sets for the currency market. ASEJ – Scientific Journal of the Bielsko-Biała School of Finance and Law, 28(3), 5–19. https://doi.org/10.19192/wsfip.sj1.2024.3

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260

Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708. https://doi.org/10.2307/1913610

Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive performance. Journal of Business & Economic Statistics, 10(4), 461–465. https://doi.org/10.1080/07350015.1992.10509910

Rasheed, A., Ali, M., & Saeed, M. (2023). A comparative analysis of LSTM, GRU, and hybrid deep learning models for stock price prediction. Applied Intelligence, 53(12), 14261–14279. https://doi.org/10.1007/s10489-023-04461-0

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179. https://doi.org/10.1198/016214502388618960

Theil, H. (1966). Applied economic forecasting. North-Holland.

Tsay, R. S. (2010). Analysis of financial time series (3rd ed.). John Wiley & Sons.

Wang, J., Ma, X., & Zhang, H. (2023). Cryptocurrency forecasting: A comprehensive comparison between classical and deep learning approaches. Expert Systems with Applications, 234, 120918. https://doi.org/10.1016/j.eswa.2023.120918

Yao, Y., Li, M., & Tan, C. (2022). Forecasting financial volatility with LSTM and GRU networks: A comparative study. Physica A: Statistical Mechanics and its Applications, 604, 127743. https://doi.org/10.1016/j.physa.2022.127743

Zaremba, A., & Kizys, R. (2020). Calendar anomalies in the cryptocurrency market. Finance Research Letters, 38, 101534. https://doi.org/10.1016/j.frl.2020.101534

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0

Zhang, Y., & Wang, S. (2021). Forecasting bitcoin returns with deep learning and traditional models: A hybrid approach. Chaos, Solitons & Fractals, 142, 110520. https://doi.org/10.1016/j.chaos.2020.110520

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Jakub Morkowski

Downloads

Download data is not yet available.