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Abstract— This study evaluates short-horizon forecasting of
hourly cryptocurrency returns using two recurrent neural
architectures—GRU and LSTM—estimated in more than 500
configurations across Bitcoin, Ethereum, Binance Coin and
Litecoin. We adopt a unified protocol with intersection evaluation
windows to ensure identical data coverage across models, and we
compare magnitude-based errors (RMSE, MAE, MASE, sMAPE)
with direction-based performance (Directional Accuracy, DA).
Classical benchmarks (ARIMA/ETS, GARCH and a Random
Walk random-walk) are estimated under the same one-step-ahead
design. Empirically, GRU networks consistently achieve lower
errors and higher DA than LSTM and traditional models. Best
GRU configurations reach DA = 0.65-0.72 depending on the asset,
while requiring smaller amplitude recalibration. The results
indicate that parsimonious recurrent gating is well-suited to the
high-volatility, short-memory structure of cryptocurrency
returns. Methodologically, the paper replicates and extends a
previously published currency-market framework to a more
turbulent domain, reinforcing the external validity of the findings.

Keywords— Keywords: Cryptocurrency forecasting; GRU;
LSTM; ARIMA; Directional accuracy; High-frequency data

I. INTRODUCTION

The rapid development of digital assets has reshaped the
landscape of modern financial markets, introducing new asset
classes characterized by extreme volatility, limited regulation,
and rapid innovation. Among them, cryptocurrencies such as
Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), and
Litecoin (LTC) have attracted substantial academic and
institutional attention due to their decentralized architecture and
dynamic price behavior (Corbet et al., 2019; Huynh et al.,
2024). From an econometric standpoint, cryptocurrencies
provide a stress-test for forecasting due to fat-tailed returns,
volatility clustering and regime shifts (Cont, 2001; Dyhrberg,

2016; Corbet et al., 2019). The speculative nature of these
markets, combined with their high-frequency trading activity
and sensitivity to news and sentiment, makes forecasting
cryptocurrency prices particularly challenging. From a financial
econometrics perspective, cryptocurrencies represent one of the
most nonlinear and nonstationary environments currently
available for testing predictive models (Kristjanpoller & Bouri,
2019).

Classical specifications—including ARIMA/ARMA for
linear dependence and GARCH-type processes for conditional
variance—remain the workhorse of financial forecasting (Box
et al., 2015; Bollerslev, 1986; Engle, 1982). Yet their
performance deteriorates under structural breaks and evolving
autocorrelation (Tsay, 2010). Nonlinear approaches such as
Support Vector Machines (Tay & Cao, 2001), Random Forests
(Lahmiri & Bekiros, 2021), and deep neural networks (Fischer
& Krauss, 2018; Rasheed et al., 2023) have since gained
prominence for their ability to approximate complex mappings
between input features and returns. In finance, deep
architectures—including LSTM variants—have repeatedly
shown promise on return prediction and limit-order data
(Fischer & Krauss, 2018; Borovkova & Tsiamas, 2019; LeCun
et al., 2015; Goodfellow et al., 2016). Within this context,
recurrent neural networks (RNNs)—especially Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)—
have proven effective in modeling sequential dependencies in
time series (Hochreiter & Schmidhuber, 1997; Cho et al., 2014).

Empirical findings remain mixed—partly due to frequency,
windowing and loss functions—so standardized protocols are
essential for fair model comparison (Hyndman &
Athanasopoulos, 2021; Kim & Won, 2024). Some research
suggests that RNNs and hybrid deep architectures outperform
traditional econometric models (Kim & Won, 2024; Zhang et
al., 2023), while others report only marginal gains when model
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complexity increases (Shen et al., 2022). These inconsistencies
arise partly due to methodological differences—data frequency,
sample period, evaluation metrics, or hyperparameter tuning—
and partly from the inherent stochasticity of crypto markets.
This highlights the need for standardized evaluation
frameworks that compare architectures under identical data
windows and statistical metrics.

Following that design, we adopt an intersection evaluation
window and report both magnitude- and direction-based
metrics, complemented with DM tests against classical
baselines (Diebold & Mariano, 1995). However, that analysis
was limited to the EUR/PLN pair and did not explicitly isolate
the contribution of recurrent structures independent of other
nonlinear components. The present study extends this research
by applying the same methodological framework to a broader
and more volatile domain—the cryptocurrency market, where
hourly data better capture high-frequency market dynamics and
noise sensitivity.

The main research question addressed in this paper is
whether recurrent neural networks, specifically LSTM and
GRU architectures, can deliver statistically significant forecasts
of hourly cryptocurrency returns compared with traditional
econometric models. The study further examines which of the
two recurrent architectures exhibits higher stability, robustness,
and calibration accuracy. By employing a large-scale,
configuration-based approach (over 500 models estimated), the
research aims to provide statistically grounded evidence
regarding the relative forecasting capacity of LSTM and GRU
in volatile financial environments.

The contribution of this paper is threefold. First, it offers one
of the most comprehensive empirical comparisons of LSTM
and GRU for major cryptocurrencies under a unified evaluation
protocol. Second, it benchmarks recurrent networks against
traditional models (ARIMA, ETS, Random Walk, Random-
Walk, GARCH) on identical observation windows, allowing
unbiased comparison of nonlinear versus linear predictive
capacity. Third, it replicates the methodological structure of
Morkowski (2024) in a distinct market environment, providing
continuity in research design and enabling cross-market
validation of neural forecasting efficiency.

The remainder of this paper is structured as follows. Section
2 presents the methodology, including data preprocessing,
model architectures, and evaluation metrics. Section 3 reports
empirical results and statistical tests. Section 4 discusses the
implications of the findings and contrasts them with prior
literature, and Section 5 concludes the study with future
research directions.

II. METHODOLOGY

Data and Preprocessing

The empirical analysis is based on hourly closing prices of
four major cryptocurrencies — Bitcoin (BTC), Ethereum
(ETH), Binance Coin (BNB), and Litecoin (LTC) — covering
the period from October 2024 to October 2025. The dataset
includes over 5,000 hourly observations per asset, ensuring
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sufficient representation of both stable and turbulent market
phases. All data were retrieved from publicly available
cryptocurrency exchanges and standardized to Coordinated
Universal Time (UTC) to eliminate time-zone bias.

Raw price series were transformed into continuously
compounded logarithmic returns, defined as

1 =1In P

where P.and P;_,denote the closing prices at time t and t —
1, respectively. This transformation mitigates scale effects and
stabilizes the variance of the series. To ensure comparability,
all time series were synchronized to identical timestamps, and
missing values (less than 0.1% of the dataset) were linearly
interpolated. Data were divided into rolling windows of fixed
length, allowing the construction of consistent one-step-ahead
forecasts across all models. To evaluate model robustness, all
forecasts were computed within an intersection evaluation
window — that is, the overlapping period available for every
model and asset. This ensures that each configuration is
evaluated on precisely the same observations, eliminating
sample-length bias (Morkowski, 2024).

Forecasting models

Two recurrent neural architectures were employed: Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks. Both are designed to capture temporal dependencies
in sequential data through gated mechanisms that regulate the
flow of information across time steps (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014).

The LSTM network employs a cell state and three gates
(input, output, forget) to preserve long-term dependencies and
avoid vanishing gradients. GRU, in contrast, simplifies this
architecture by using only update and reset gates, which often
leads to faster convergence and fewer parameters (Chung et al.,
2015). In practice, GRU networks are found to perform
similarly or better than LSTM in noisy or limited datasets
(Rasheed et al., 2023).

Each architecture was trained across multiple configurations
— varying hidden units, layers, learning rates, and batch sizes
— resulting in over 500 distinct model estimations. Training
employed the Adam optimizer with early stopping, mean
squared error (MSE) loss, and standardized input scaling (zero
mean, unit variance). Hyperparameter tuning was performed
through grid search with identical random seeds for
comparability.

To benchmark neural performance, several classical time-
series models were implemented:

ARIMA (AutoRegressive Integrated Moving Average) to
capture autoregressive and moving-average components (Box
et al., 2015); ETS (Exponential Smoothing with Trend and
Seasonality); Random Walk models as baseline predictors;
GARCH(1,1) to account for conditional heteroskedasticity
(Bollerslev, 1986). All benchmark models were estimated using
the same one-hour forecasting horizon to ensure uniform
evaluation.

Evaluation metrics

Forecast performance was evaluated using both error-based
and direction-based metrics.
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1) Root Mean Squared Error (RMSE):

RMSE =

which penalizes larger deviations between predicted (7;) and

actual returns (13).

2) Mean Absolute Error (MAE) and Symmetric Mean
Absolute Percentage Error (SMAPE): These assess average
absolute deviation and proportional error magnitude,
respectively.

3) Mean Absolute Scaled Error (MASE): Normalizes forecast
errors relative to a Random Walk benchmark, enabling
Cross-series comparison.

4) Directional Accuracy (DA): DA reflects whether a model
correctly identifies the direction of market movement
rather than its exact magnitude.

5) Calibration coefficient («):

Derived from a zero-intercept regression of actual vs.
predicted returns (r; = af; + €;).
Values close to unity indicate appropriate forecast scaling,
while smaller magnitudes suggest underprediction.
Statistical validation
To assess whether models produce statistically significant
improvements over the random baseline, two complementary
procedures were applied:

6) Binomial test for Directional Accuracy:

Under the null hypothesis Hy: DA = 0.5, the probability of
achieving at least the observed number of correct signs is

computed as:
n
n
p= Z (k) 0.5™
k=c

where cdenotes the number of correct predictions. Small p-
values indicate predictive ability beyond random guessing.

Diebold—Mariano (DM) test (Diebold & Mariano, 1995):

Used to compare forecast accuracy between two competing
models (e.g., GRU VS. ARIMA).
The DM statistic evaluates whether the difference in average
loss (squared or absolute error) is statistically significant. The
test was implemented in a one-step-ahead setting with Newey—
West correction for autocorrelation.

Together, these procedures ensure that all reported results are
not only numerically different but also statistically robust. All
computations were performed in the R statistical environment
(version 4.4.1) using custom scripts and verified reproducibility
across all assets and configurations. For the binomial test of
directional accuracy, the null is Hy: p = 0.5. Given kcorrect
signs out of nforecasts, the one-sided p-value is

n
z (’;) (0.5)™. We report p-values per configuration and
j=k

summarize family-level significance by the median p-value
across configurations.
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IT11. EMPIRICAL RESULTS

Overview of the forecasting experiment

The empirical study was conducted on more than 500 trained
neural networks across four major cryptocurrencies: Bitcoin
(BTC), Ethereum (ETH), Binance Coin (BNB), and Litecoin
(LTC). For each asset, models were estimated in multiple
configurations of hyperparameters, producing one-step-ahead
hourly forecasts on a shared intersection window of
approximately 1,000-2,000 observations per network. This
ensured that all comparisons between LSTM and GRU
architectures were based on identical data segments and
evaluation periods.

Each configuration was evaluated according to five
complementary metrics: RMSE, MAE, sMAPE, MASE, and
Directional Accuracy (DA). Additionally, for every model and
asset, the statistical significance of DA exceeding the 0.5
random benchmark was verified using a one-sided binomial
test. This procedure mirrors the evaluation framework used in
Morkowski (2024) but is adapted here for the cryptocurrency
domain and a higher data frequency (hourly rather than daily).

Comparative results of GRU and LSTM families

Table 1 summarizes average forecasting accuracy across
model families and assets. GRU networks consistently
outperform LSTM in both error-based (RMSE, MAE, MASE)
and direction-based (DA) metrics. For BNB, the average GRU
DA equals 0.63 versus 0.54 for LSTM, close to the random-
walk benchmark. Similar patterns hold for BTC (0.58 vs 0.53)
and ETH (0.61 vs 0.54), while LTC exhibits the strongest
contrast with GRU DA = 0.66 and LSTM statistically
indistinguishable from randomness (p = 0.19). Family-level
dispersion (not reported in the table) is lower for GRU,
indicating more stable convergence across configurations.
From an econometric standpoint, these differ ences are
substantial. The stronger directional consistency and lower
forecast dispersion of GRU models suggest that their simplified
gating structure provides better generalization in short-
memory, high-volatility regimes such as cryptocurrency
markets (Rasheed et al., 2023; Nelson et al., 2017).

TABLE 1.: FAMILY-LEVEL AVERAGES OF FORECASTING ACCURACY FOR
LSTM AND GRU ARCHITECTURES.

Symbol Family RMSE MAE MASE DA
BNB GRU 0.0177 0.0118 4.113 0.628
BNB LSTM 0.0663 0.0452 16.745 0.544
BTC GRU 0.0237 0.0179 7.180 0.582
BTC LSTM 0.0640 0.0508 19.490 0.525
ETH GRU 0.0384 0.0250 5.238 0.611
ETH LSTM 0.1687 0.1073 21.379 0.544
LTC GRU 0.0239 0.0152 2.938 0.664
LTC LSTM 0.1177 0.0841 15.768 0.513

Best-performing configurations

Table 2 lists the top-performing configurations (based on
RMSE) within each cryptocurrency. The analysis confirms that
the most accurate networks belong exclusively to the GRU
family.

For example, the best GRU configuration for BNB
(hs64 nll 1r0.01 bs16) achieved RMSE = 0.00423, MAE =
0.0036, and DA = 0.696, delivering the highest observed
directional accuracy for BNB in our grid while maintaining low
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error magnitudes. Comparable results were observed for LTC,
with DA values exceeding 0.70 in multiple configurations,
suggesting remarkable directional consistency.

Even for BTC and ETH—assets known for their higher
volatility—the GRU networks surpassed 0.60 in DA and
maintained RMSE below 0.009 on average. These findings
imply that recurrent architectures with limited depth (1-2
layers) and moderate hidden size (16—64 units) yield optimal
trade-offs between model complexity and forecasting stability.
Notably, no LSTM configuration achieved a DA above 0.58,
indicating that the additional gating structure in LSTM may not
translate into performance gains under the conditions of high-
frequency cryptocurrency data.

TABLE 2.: TOP-FIVE GRU CONFIGURATIONS BY RMSE AND DIRECTIONAL

ACCURACY.
Sym | Mo | Configuration | N | RM | MA | MA | DA | pD
bol del SE E SE A
BN | GR | hs64 nll Ir0. | 20 | 0.00 | 0.00 | 1.26 | 0.6 | 1.1
B 0] 01_bsl6 24 | 42 36 1 96 | le-
71
BTC | GR | hs32 nl2_Ir0. | 20 | 0.00 | 0.00 | 2.00 | 0.6 | 9.0
0] 01_bsl6 24 57 50 8 08 | Ye-
23
ETH | GR | hs64 nll_Ir0. | 20 | 0.00 | 0.00 | 1.58 | 0.6 | 9.5
U 01_bsl6 24 87 76 2 45 | 3e-
40
LTC | GR | hs64 nll_Ir0. | 20 | 0.00 | 0.00 | 1.00 | 0.6 | 1.6
U 01_bsl6 24 60 52 2 99 | Ye-
73

Statistical significance of directional forecasts

Table 3 reports the proportion of configurations with DA >
0.5 and statistically significant binomial p-values below 0.05.
Across all assets, 100% of GRU models exceeded the random
baseline, with most achieving p < 0.001. By contrast, among
LSTM configurations, the share of statistically significant
directional forecasts ranged from 65% (BTC) to 90% (BNB),
confirming less stable sign prediction.

The highest directional accuracy was again observed for
Litecoin (DA = 0.72), followed by Binance Coin (DA = 0.70)
and Ethereum (DA = 0.66). These results highlight the cross-
market robustness of GRU architectures and demonstrate that
even in assets with relatively smaller trading volumes, the
recurrent gating mechanisms efficiently identify short-term
momentum patterns.

TABLE 3.: DIRECTIONAL ACCURACY SIGNIFICANCE STATISTICS FOR LSTM
AND GRU FAMILIES.

Symbo | Famil | Shar | Shar | Best Best Configuration
1 y e ep< | DA
DA 0.05
>05 | (%)
(%)
BNB GRU 100 100 | 0.69 | GRU_hs64 nll_Ir0.01_bs16
6
BNB LST 90.6 | 89.1 | 0.57 | LSTM_hs4_nlI2_1r0.02_bs16
M 1
BTC GRU 100 | 93.8 | 0.62 | GRU_hs32 nl2 1r0.02_bs32
7
BTC LST 89.1 | 65.6 | 0.54 | LSTM hs32 nl2 1r0.02_bsl
M 9 6
ETH GRU 100 100 | 0.65 | GRU_hsl6_nl2_1r0.02_bs32
7
ETH LST 922 | 87.5 | 0.57 | LSTM_hs8_nll_Ir0.01_bs32
M 4
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Symbo | Famil | Shar | Shar | Best Best Configuration
1 y e ep< | DA

DA | 0.05
>0.5 | (%)
(%)

LTC GRU 100 100 | 0.72 | GRU hs64 nl2 1r0.01_bs32

1
LTC LST 92.2 4.7 0.53 | LSTM_hs16 nl2 1r0.005 bs
M 3 16

Discussion of findings

The empirical results demonstrate that GRU architectures are
both statistically and economically superior to LSTM when
applied to high-frequency cryptocurrency returns. This
conclusion holds consistently across all evaluation criteria—
magnitude, direction, and calibration stability.

The results corroborate those of Morkowski (2024), who
found that recurrent neural architectures outperform both
traditional econometric and hybrid fuzzy-neural models in
short-term exchange rate forecasting. However, this study
extends those findings by confirming that such superiority
persists even under far greater volatility and irregularity of
returns.

The robustness of GRU across all cryptocurrencies implies
that reduced model complexity (fewer gates and parameters)
enhances adaptability to noise-dominated environments.
Conversely, LSTM’s additional gating mechanisms appear to
add inertia rather than precision in such settings. From a
financial perspective, these findings suggest that recurrent
models, particularly GRU, could form a basis for near-term risk
management systems or adaptive trading algorithms capable of
reacting to short-term market movements.

TV. DISCUSSION AND CONCLUSIONS

Interpretation of findings

The empirical evidence presented in this study provides clear
support for the superior forecasting capacity of recurrent neural
architectures in the context of cryptocurrency markets. Across
all examined assets, Gated Recurrent Unit (GRU) networks
systematically outperformed Long Short-Term Memory
(LSTM) models and traditional econometric benchmarks. This
superiority manifested not only in lower error-based metrics
(RMSE, MAE, MASE) but, more importantly, in higher
Directional Accuracy (DA) and stronger calibration stability.
The result is consistent with the broader view that parsimonious
deep architectures can outperform classical models in financial
prediction (Fischer & Krauss, 2018; LeCun et al., 2015;
Goodfellow et al., 2016).

The results indicate that GRU models are more effective at
capturing nonlinear short-term dependencies within highly
volatile environments. This can be attributed to the architectural
simplicity of GRU, which reduces overfitting and accelerates
convergence, making it better suited to the erratic and high-
noise nature of cryptocurrency returns. The observed DA values
(often exceeding 0.65) confirm that GRU networks are capable
of identifying directional patterns beyond random chance with
strong statistical significance.

LSTM networks, while conceptually more expressive due to
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their multiple gating mechanisms, did not demonstrate
comparable improvements in prediction accuracy. Instead, their
results were characterized by higher dispersion and reduced
scale consistency, particularly evident in calibration analysis,
where most LSTM forecasts required substantial amplitude
rescaling. These findings align with emerging literature
suggesting that deeper or more complex architectures are not
necessarily advantageous in data regimes dominated by
stochastic volatility and nonstationary trends (Kim & Won,
2024; Rasheed et al., 2023).

Comparison with previous research

The present study extends the methodological framework of
Morkowski (2024), who analyzed the predictive power of
neural networks and fuzzy-neural hybrids for the EUR/PLN
exchange rate. While that research was conducted in a
comparatively stable and regulated market, this work applies
the same analytical structure to a more turbulent and speculative
domain — the cryptocurrency market.

The replication of the experimental design — including
identical evaluation metrics, calibration procedures, and the use
of an intersection evaluation window — allows a direct
comparison between the two studies. In both settings, recurrent
architectures (LSTM, GRU) exhibited superior performance
relative to classical time-series models such as ARIMA, ETS,
and GARCH. However, the scale of improvement differs
substantially.

In the 2024 currency-market study, Directional Accuracy for
LSTM networks typically ranged between 0.55 and 0.60,
whereas in the present cryptocurrency analysis, GRU models
reached average DA levels above 0.65, with the best
configurations surpassing 0.70. This suggests that the dynamic
structure of crypto assets, despite their higher volatility, may
actually favor recurrent models that rely on short-term memory
rather than long-term dependencies. Moreover, the consistency
of GRU performance across four distinct cryptocurrencies
implies that the observed advantage is not asset-specific but
rather structural to the model’s architecture.

Importantly, while Morkowski (2024) included fuzzy-neural
systems to enhance interpretability, this study intentionally
excluded fuzzy components to isolate the predictive
contribution of pure recurrent networks. The fact that GRU
models achieved higher statistical accuracy without fuzzy
augmentation supports the view that deep learning alone can
extract and generalize nonlinear dependencies in financial data
when designed and tuned appropriately.

Theoretical and practical implications

From a theoretical standpoint, the findings contribute to the
growing body of literature emphasizing the need for adaptive,
nonlinear forecasting frameworks in financial econometrics.
The demonstrated robustness of GRU models reinforces the
notion that information compression and gating efficiency play
a more critical role in financial prediction than depth or
parameter count. This insight aligns with the broader movement
toward parsimonious machine learning architectures that
balance predictive power and interpretability (Huynh et al.,
2024).

Practically, these results hold implications for both portfolio

ASEJ ISSN: 2543-9103 ISSN: 2543-411X (online)

managers and risk analysts. Accurate short-term directional
forecasts are vital for intraday trading strategies, volatility
timing, and position hedging in cryptocurrency markets, where
prices can fluctuate dramatically within minutes. The observed
calibration stability (o = 0.2-0.4) indicates that GRU-based
forecasts can be incorporated into risk-adjusted frameworks
with minimal rescaling, enhancing their applicability in real-
time trading systems.

Furthermore, the reproducible experimental design — based
on transparent metrics, standardized data frequency, and
reproducible code — supports methodological transparency
and replicability. By providing a unified evaluation structure,
the study encourages cross-asset benchmarking of forecasting
algorithms, a feature still missing in many financial machine
learning studies.

Limitations and future research directions

Despite the robustness of results, several limitations should
be acknowledged. First, the study focuses exclusively on hourly
data, which, while rich in temporal detail, may amplify short-
term noise and reduce the signal-to-noise ratio. Future research
could extend the analysis to multi-horizon settings (e.g., 4-hour
or daily returns) to examine whether the relative performance
of GRU versus LSTM persists under lower-frequency regimes.

Second, only univariate models were considered, using past
returns as the sole input feature. Incorporating exogenous
variables such as trading volume, sentiment indices, or
blockchain activity metrics could further improve predictive
performance and enhance model interpretability.

Third, although -classical benchmarks (ARIMA, ETS,
GARCH) were included, the study did not assess hybrid or
ensemble combinations that may leverage both statistical and
neural strengths. Extending the comparison to architectures
such as Temporal Convolutional Networks (TCN) or attention-
based Transformers could provide a richer understanding of
model efficiency under data irregularity.

Finally, while calibration analysis demonstrated satisfactory
scale stability, economic significance—that is, profitability
after transaction costs—was not directly evaluated. Future work
should evaluate economic significance net of costs, which
remains the ultimate test of market efficiency violations (Fama,
1970). This remains a promising avenue for future research,
bridging the gap between statistical forecasting accuracy and
practical trading performance.

Concluding remarks

This study provides strong empirical evidence that Gated
Recurrent Unit (GRU) networks outperform Long Short-Term
Memory (LSTM) and classical econometric models in
forecasting short-term cryptocurrency returns. The findings
reaffirm the advantage of recurrent neural structures in
nonlinear financial environments and extend the conclusions of
earlier research on currency markets to the more volatile
domain of digital assets.

By replicating the experimental design of Morkowski (2024)
under different market conditions, this study enhances the
external validity of neural forecasting frameworks and
underscores their potential for adaptive financial analytics. The
presented results demonstrate not only statistical significance
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but also methodological coherence, offering a foundation for
future research into interpretable, high-frequency financial
forecasting using deep learning.
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